Maintenance of Generalized Association Rules Under Transaction Update and Taxonomy Evolution

نویسندگان

  • Ming-Cheng Tseng
  • Wen-Yang Lin
  • Rong Jeng
چکیده

Mining generalized association rules among items in the presence of taxonomies has been recognized as an important model in data mining. Earlier work on mining generalized association rules ignore the fact that the taxonomies of items cannot be kept static while new transactions are continuously added into the original database. How to effectively update the discovered generalized association rules to reflect the database change with taxonomy evolution and transaction update is a crucial task. In this paper, we examine this problem and propose a novel algorithm, called IDTE, which can incrementally update the discovered generalized association rules when the taxonomy of items is evolved with new transactions insertion to the database. Empirical evaluations show that our algorithm can maintain its performance even in large amounts of incremental transactions and high degree of taxonomy evolution, and is more than an order of magnitude faster than applying the best generalized associations mining algorithms to the whole updated database.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incremental maintenance of generalized association rules under taxonomy evolution

Mining association rules from large databases of business data is an important topic in data mining. In many applications, there are explicit or implicit taxonomies (hierarchies) for items, so it may be useful to find associations at levels of the taxonomy other than the primitive concept level. Previous work on the mining of generalized association rules, however, assumed that the taxonomy of ...

متن کامل

The fuzzy data mining generalized association rules for quantitative values

Due to the increasing use of very large databases and data warehouses, mining useful information and helpful knowledge from transactions is evolving into an important research area. Most conventional data-mining algorithms identify the relationships among transactions using binary values and find rules at a single concept level. Transactions with quantitative values and items with hierarchy rel...

متن کامل

Maintenance of generalized association rules with multiple minimum supports

Mining generalized association rules among items in the presence of taxonomy has been recognized as an important model in data mining. Earlier work on generalized association rules confined the minimum supports to be uniformly specified for all items or items within the same taxonomy level. This constraint would restrain an expert from discovering more interesting but much less supported associ...

متن کامل

Preknowledge-based generalized association rules mining

The subject of this paper is the mining of generalized association rules using pruning techniques. Given a large transaction database and a hierarchical taxonomy tree of the items, we attempt to find the association rules between the items at different levels in the taxonomy tree under the assumption that original frequent itemsets and association rules have already been generated in advance. T...

متن کامل

Efficient Remining of Generalized Multi-supported Association Rules under Support Update

Mining generalized association rules among items in the presence of taxonomy and with nonuniform minimum support has been recognized as an important model in data mining. In our previous work, we have investigated this problem and proposed two algorithms, MMS_Cumulate and MMS_Stratify. In real applications, however, the work of discovering interesting association rules is an iterative process. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005